4-Metalated Condensed Pyrimidines: Their Preparation and Reaction with Aldehydes under Barbier-Type Conditions

Frans D. Therkelsen,† Mario Rottla1**nder,‡ Niels Thorup,§ and Erik Bjerregaard Pedersen*,†**

*Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, Campus*V*ej 55, DK-5230 Odense M, Denmark, Medicinal Chemistry Research, H. Lundbeck A/S, Ottilia*V*ej 9, DK-2500 Valby, Denmark, and Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark*

ebp@chem.sdu.dk

Received March 26, 2004

ORGANIC LETTERS

2004 Vol. 6, No. 12 ¹⁹⁹¹-**¹⁹⁹⁴**

The organometallic intermediate obtained from halogen−**metal exchanges of 4-iodo-6-phenylthieno[2,3-***d***]pyrimidine under Barbier-type conditions was reacted with aldehydes to form the corresponding alcohols in moderate yields. The reaction involving an organolithium intermediate proceeded only at low temperature, whereas the reaction involving a magnesium ate intermediate also proceeded at room temperature. A crystal structure confirms that the expected constitutional alcohol isomer is formed, where no migration has taken place. The conditions were also suitable for 9-benzyl-6-iodopurine.**

Halogen-metal exchange reactions have evolved as versatile methods over the past decades, and special attention is paid to metalated π -deficient heterocycles as a result of their use in either coupling reactions¹ or nucleophilic addition reactions.² The published material is scarce regarding halogen $$ metal exchange of halo-diazines for use in nucleophilic addition reactions. Some of the best results use methods involving Rieke Mg³ or metallic Li⁴ as metalation agents.

The use of organometallic agents has been less successful. This is explained by the low LUMO level in the π -deficient diazines, which makes the systems more prone to attack from nucleophiles.⁵ The best results with organometallic agents are obtained with diazines substituted with electron-donating groups, such as methoxy or thiomethoxy groups.6 Recently, this was further exemplified by halogen-metal exchange of 9-benzyl-6-iodopurine with *ⁱ* PrMgCl, which produced a stable 6-magnesiated purine at 0° C, which was subsequently reacted with aldehydes in toluene to give the corresponding

[†] University of Southern Denmark.

[‡] H. Lundbeck A/S.

[§] Technical University of Denmark.

^{(1) (}a) Gangjee, A.; Yu, J.; Kisliuk, R. L.; Haile, W. H.; Sobrero, G.; McGuire, J. J. *J. Med. Chem.* **²⁰⁰³**, *⁴⁶*, 591-600. (b) Gundersen, L.; Nissen-Meyer, J.; Spilsberg, B. *J. Med. Chem*. **²⁰⁰²**, *⁴⁵*, 1383-1386.

⁽²⁾ Abarbri, M.; Thibonnet, J.; Berillon, L.; Dehmel, F.; Rottlaender, M.; Knochel, P. *J. Org. Chem.* **²⁰⁰⁰**, *⁶⁵*, 4618-4634.

⁽³⁾ Sugimoto, O.; Yamada, S.; Tanji, K. *J. Org. Chem*. **²⁰⁰³**, *⁶⁸*, 2054- 2057.

⁽⁴⁾ Lepretre, A.; Turck, A.; Ple, N.; Queguiner, G. *Tetrahedron* **2000**, *⁵⁶*, 3709-3715.

⁽⁵⁾ Turck, A.; Ple´, N.; Mongin, F.; Que´guiner, G. *Tetrahedron* **2001**, *⁵⁷*, 4489-4505.

 (6) Lepretre, A.; Turck, A.; Plé, N.; Knochel, P.; Quéguiner, G. *Tetrahedron* **²⁰⁰⁰**, *⁵⁶*, 265-273.

alcohols in $25-62\%$ overall yield.⁷ As the pyrimidine ring in 9-benzyl-6-iodopurine is significantly less π -deficient than in 4-iodo-6-phenylthieno[2,3-*d*]pyrimidine (**1**) the procedure from Tobrman is expected to be less efficient for **1**.

We report here a relatively convenient, effective, and fast method to synthesize either aliphatic or aromatic alcohols (**2a**-**f**) by halogen-metal exchange of **¹** in the presence of an aldehyde using Barbier-type conditions.

Conventional metalation attempts on **1** using *ⁱ* PrMgBr or *n* BuLi followed by treatment with an electrophile were unsatisfactory. Although some product was formed at -76 °C, the reaction also formed unacceptable amounts of the 4-hydro (**3a**) and the 4-*ⁱ* Pr (**3b**)/4-*ⁿ* Bu (**3c**) derivatives of **1** (Figure 1).

Figure 1. Products occasionally observed in the synthesis of **2a** and the oxidized product, **3d**, obtained in the synthesis of **2e**. Compounds **3a**, **4a**, and **4b** are difficult to separate from **2a**.

The magnesium ate complex $(R^1)_2R^2MgLi$, formed by addition of 2 equiv of R^1Li to 1 equiv of R^2MgX (Scheme 1), is described as being effective in halogen-magnesium

exchange of pyridines, and in addition, the reactivity can be tuned by altering the R groups, the reactivity being increased $Me ⁿBu ⁱPr^{8,9}$ Recently, good results were reported
using the tributyl-magnesium ate complex as the metallating using the tributyl-magnesium ate complex as the metallating agent for bromoquinolines, where other conventional Grignard reagents, such as ^{*i*}PrMgCl, were unsuccessful.¹⁰

Preliminary studies using **1** together with an excess of 4-methoxybenzaldehyde (**E1**) and either Me2BuMgLi (**M1**), Bu₃MgLi (M2), Bu₂PhMgLi (M3), Ph₂BuMgLi (M4), or Ph₂-BnMgLi (**M5)** as the metallating agent were performed in

THF. A solution of **M1** added to 1 in THF at -76 °C immediately produced a black solution, and immediate quenching with **E1** gave some of the corresponding alcohol **2a** but also a considerable amount of the hydrogen derivative **3a**.

An experiment with an iodobenzene derivative showed that the magnesium ate complex reacted preferentially with the iodo compound rather than an aldehyde already present in the reaction mixture.⁸ Taking this result into consideration, the magnesium ate complex **M2** was added to a mixture of **1** and the electrophile **E1** and the corresponding alcohol **2a** was formed in 23% yield (Table 1) with no formation of

^a Yield after chromatographical purification. Occasionally small amounts (0-10%) of alcohol derivatives (**4a** and/or **4b** (using **M1**)) of **E1** were co-isolated with **2a**. The yields tabulated are the corrected yields determined from ¹H NMR. A pure product was obtained by recrystallization. $\frac{b}{2}$ equiv of $(R^1)_2R^2MgLi.$ ^c 3 equiv of $(R^1)_2R^2MgLi.$ *d* No conversion of 1. *e* 6 equiv of *ⁿ*BuLi or *ⁿ*BuMgCl. *^f* Reaction at room temperature. *^g* Full conversion; **3a** and unidentified products were formed.

3a. Repeating the experiment with **M1** and **M3** gave **2a** in 60% and 56% yield, respectively. Formation of **3a** was not observed under the Barbier-type conditions. The experiment was repeated using **M1** to explore the outcome of the reaction at different temperatures. It was rather surprising to find that the reaction at room temperature gave **2a** in 62% yield, especially as the reaction mixture turned black (at low temperature the reaction mixture typically turned orangebrown) in an exothermic reaction as **M1** was added.

The reaction proceeded with lower yields when **M4** and **M5** were used as the metallating agent. **M4** proved to be unreactive toward 1 at -76 °C, but at 0 °C the reaction gave **2a** in 38% yield, whereas using **M5** at -76 °C gave **2a** in 41% yield.

Interestingly, the principle of adding the metallating agent to **1** and **E1** (Barbier-type conditions) also proved valid for *ⁿ*BuLi at low temperature but not for *ⁿ*BuMgCl.6 Using *n*BuLi the reaction proceeded at -76 °C to give **2a** in 57% vield but at 0 °C only **3a** and unidentified products were yield, but at 0 °C only **3a** and unidentified products were observed. No significant conversion of **1** was observed using

⁽⁷⁾ Tobrman, T.; Dvorak, D. *Org. Lett*. **²⁰⁰³**, *⁵*, 4289-4291.

⁽⁸⁾ Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. *J. Org. Chem*. **²⁰⁰¹**, *⁶⁶*, 4333-4339.

⁽⁹⁾ Mase, T.; Houpis, I. N.; Akao, A.; Dorziotis, I.; Emerson, K.; Hoang, T.; Iida, T.; Itoh, T.; Kamei, K.; Kato, S.; Kato, Y.; Kawasaki, M.; Lang, F.; Lee, J.; Lynch, J.; Maligres, P.; Molina, A.; Nemoto, T.; Okada, S.; Reamer, R.; Song, J. Z.; Tschaen, D.; Wada, T.; Zewge, D.; Volante, R.

P.; Reider, P. J.; Tomimoto, K. *J. Org. Chem.* **2001**, *66*, 6775–6786.
(10) Dumouchel, S.; Mongin, F.; Trécourt, F.; Quéguiner, G. *Tetrahedron Lett*. **²⁰⁰³**, *44,* ²⁰³³-2035.

*n*BuMgCl at -76 °C, but at 0 °C the reaction almost exclusively gave 3a in preference to 2a. Full conversion of exclusively gave **3a** in preference to **2a**. Full conversion of **1** was observed using *ⁿ* BuLi as the metallating agent, whereas a trace of **1** still remained unreacted using the magnesium ate complexes (**M1**-**M5**).

To investigate the potential of the reaction a miscellaneous set of electrophiles (**E1**-**E8**, Table 2) was reacted with **¹**

Table 2. Reaction of **1** in the Presence of Excess Electrophile with an Excess of Metalating Agent

electrophile		product yield ^a at -76 °C yield ^a at 0 °C	
$E1: 4-MeOPhCHO$	2э	60% ^b , 57% ^c	62% ^{b,d} , 0% ^c
E2: PhCHO	2b	55%	
E3: 4-NCPhCHO	2с	$54%^{b}$	minor ^{b,e,f}
$E4: 3-ClPhCHO$	2d	28%8, 52%c	
E5: 1-naphthyl.CHO	2е	$48%^{b,h}$	minor _{b,e,h,i}
$E6: c$ -hexaneCHO	2f	55%s, 65%c	
E7: HCO ₂ Et	2g	51% ^b , 25% ^{c,j}	0% c,e,f,g
E8 : PhCOPh	2h	0% c,e,f,g	0% ^{c, e, f} , g

a Yield after chromatographical purification. Occasionally small amounts (0–10%) of alcohol derivatives of $E1-E6$ (analogues to **4a** and **4b** (using (0-10%) of alcohol derivatives of **E1**-**E6** (analogues to **4a** and **4b** (using **M1**)) were co-isolated with **2a**-**f**. The yields tabulated are the corrected vields determined from ¹H NMR Pure products were obtained by yields determined from 1H NMR. Pure products were obtained by recrystallization. ^{*b*} 3 equiv of **M1**. ^{*c*} 6 equiv of ^{*n*}BuLi. ^{*d*} Reaction at room temperature. *^e* Analyzed by TLC. *f* **3a** and unidentified products formed. $\mathbf{\hat{s}}$ 3 equiv of **M3**. *h* Oxidizes over time to the ketone **3d**. *i* **3d** was formed as the major product. *^j* **2g** was co-isolated with **3c**.

using the conditions described above. In addition to **E1**, four additional aromatic aldehydes (**E2**-**E5**), some of them having an electron-withdrawing group, were reacted with **1**.

The alcohol products **2b**-**^e** were isolated in 48-55% yield using either the magnesium ate complex (**M1** or **M3**) or *n*BuLi at -76 °C (Table 2).

The synthesis of 2c at 0

The synthesis of **2c** at 0 °C using **M1** failed, as only a minor quantity of **2c** was formed (analyzed by TLC) along with **3a** and unidentified products. The alcohol product **2e** derived from the reaction with 1-naphthaldehyde proved unstable and oxidized over time to the corresponding ketone, **3d** (Figure 1). Compound **3d** was the main product when the reaction (analyzed by TLC) was carried out at 0 °C. The aliphatic cyclohexanecarboxaldehyde gave the corresponding alcohol 2f in 55% and 65% yield at -76 °C using M3 and BuLi, respectively. The introduction of the CHO group directly attached to the 4 position of the pyrimidine ring (**2g**) was accomplished smoothly in 51% yield using **M1** and ethyl formate at -76 °C. *ⁿ*BuLi was not suitable for the synthesis of 2*g* as only a 25% yield of 2*g* was co-isolated with a 13% of **2g**, as only a 25% yield of **2g** was co-isolated with a 13% yield of **3c**. Both **M3** and *ⁿ* BuLi did not give the desired alcohol **2h** when a ketone (benzophenone, **E8**) was used as the electrophile; only **3a** and unidentified products were formed.

The Barbier-type reaction was extended to the purine ring system. 9-Benzyl-6-iodopurine (**5**) was metalated in the presence of 4-methoxybenzaldehyde (**E1**) with either **M3** or *n* BuLi (Scheme 2). Full conversion of **5** was observed when

*n*BuLi at -76 °C was used as the metallating agent, and the alcohol 6a was isolated in 43% yield alcohol **6a** was isolated in 43% yield.

When **M3** was used as the metallating agent, only moderate conversion of 5 was observed. At -76 °C, 6a and

Figure 2. Molecule **2a** as found in the crystal structure.

6b were formed in 20% and 8% yield, respectively. At 0 °C **6a** was formed in 30% yield and 36% of **5** was recovered, whereas **6b** was not formed.

It has previously been described that a relocation of the carbanion from the 6 to the 8 position took place when 6-iodo-9-(tetrahydro-pyran-2-yl)purine was treated with *n*BuLi at $-76 \degree C$.¹¹ We observed only a single constitutional

isomer in the syntheses of 2a- σ and 6a, regardless of isomer in the syntheses of **2a**-**^g** and **6a**, regardless of whether *"BuLi* or the magnesium ate complex was used as the metallating agent. Single crystals of **2a** were obtained by crystallization from ethyl acetate/petroleum ether, and the crystal structure was determined by X-ray crystallography. The resultant structure (Figure 2) confirms that the formed product is the expected alcohol where no relocation of the carbanion has taken place before the nucleophilic attack at **E1**.

The synthesis of **1** was completed in four steps in 46% overall yield (Scheme 3). Compound **7**¹² was obtained in 64% yield in a modified procedure. The following ring closure to **8** was quantitative, and **9** was obtained in 85% yield using POCl3/DMF. Compound **1** was obtained in 85% yield after prolonged stirring with HI. Compound **5** was obtained by a selective benzylation of 6-iodopurine in 73% yield (Scheme 3).

Supporting Information Available: Detailed experimental procedures and characterization for the synthesis of **1**, $2a-g$, **5**, $6a$, and $7-9$, as well as crystallographic data (in CIF format) for **2a**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL049432V

⁽¹¹⁾ Leonard, N. J.; Bryant, J. D. *J. Org. Chem.* **¹⁹⁷⁹**, *⁴⁴*, 4612-4616.

⁽¹²⁾ Gewald, K.; Schinke, E.; Böttcher, H. *Chem. Ber.* **1966**, 99, 94-100.